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We consider a nonholonomic mechanical system with kinetic energy T = 112 g,P,q’hq’i” 

subjected to nonholonomic constraints P o, 4 ‘* = 0 , and a corresponding constraint-free 

system [l]. The indices A, P, Y, . . . assume the values I, 2. . . . . n; a, b, c, . . . are 

i,2, . . ., k and P, 4, r, . . . arqk, . . .,7t. The equation of the constraint-free system 

have the form 
Sg”tldt = Q”, Gq‘“!& = Q^‘X f r&‘L& Q” = g’“~U/~q” (1) 

while the equations of the nonholonomic system are 

Ds-a/dt = Fa (2) 

and the expressions for Dra / dt, Pl,c and Fa are given in Cl]. 

The conditions for the expression &” = C to be a linear integral of a nonholonomic 

system are [ 1 - 43 
.A&, + &,h, = 0, h,FC .= 0 (3) 

The necessary and sufficient condition for a nonholonomic system (51 to have the first 

integral &qeX =L: C linear in the hagrangian velocities is, that this integral is a linear 

integral of the geodesics of the metric space V, with the metric tensor g,, and, that 

the vectors Q” and OJ are orthogonal to the vector g,, i. e. 

v&, + VJ, = 0, o;*Y = 6, Q,E" = 0 (4) 

Both groups of conditions (3) and (4) differ from each other. Let us inspect this feature 

in greater detail. Let &q” = C be a linear integral of a nonholonomic system. Let 

“rlX = E, -F Pn wpX: where pp are functions of the generalized coordinates qx. Then, using 

the equations of constraints, we obtain 

r1,4’” = (4, + PpQf q’* = 9,4’x 

Consequently, tlXqSx = C represents the same integral of the nonholonomic system writ- 
ten in a different form. We shall say that the vectors tlX all generate the same linear 
integral. Let us expand the vector E, in terms of the vectors o” [ 11. We have E, = 

PaoXa + FpuXP and this implies that ql, = Pawxa generates the same linear integral. 
The vector tlx = paoXa is unique amongst the vectors generating the given linear in- 

tegral and satisfies the second condition of (4), i.e. it lies in the admissible space. Con- 

sequently the above condition is not a necessary one for the existence of the linear integ- 
ral ; as we said in fl], it is only sufficient. 

Let 71x = pa@,= and see how it affects the conditions (3). Using the formula [l] 
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and taking into account the fact that wXacpX = 0 Cl]. we transform the left-hand side 
of the second condition of (3) into 

h,FC = rj,acxGcbQV~bv = qxQv (g”” - Gpqupxczqy) = 

P,~,~QJ~~"-~ GpqupXaqy) = PaoXaQyg’” = n,Q” 

This establlshes that the second condition of (3) and the third condition of (4) are eqni- 
Vale% Transforming the first condition of (3) as it was done in [I], we have 

(V,% + VA) acXcaY + nX (V,u,” + VaacX) = 0 

Substituting q, = p60, b in the above expression and using the fact that oXbV,ueX = 0 
El], we obtain 

(V,q, + V,qI.J aaXac* = 0 

This constitutes the proof of the following theorem. If &J’~ = C is a linear integral of 
a nonholonomic scleronomous system, then infinite number of vectors ‘nX = E, + p, x 
($$D,~ exist containing its generators pp. However, of all these vectors,exactly one vector 
exists, ?J* = P,(I),? which lies in the admissible space. The necessary and sufficient 
conditions for the relation qXqgx = C (where qX lies in the admissible space) to be the 
first Iinear integral of a nonholonomic system. are the following: 

(V,q, + V,&) c,“c,’ = 0, nxwXp = 0, nXQX = 0 (5) 

Let us consider the first condition of (4) and the corresponding first condition of (5). 
The equations of the constraint-free system in inertial motion are as follows: 

6q’” ! dt = 0 (6) 
Differentiating the left-hand side of the linear integral and using the last relations of(4) 
and (6), we obtain 6 6% 

dt (11,q’“) = -$- 4’% = v,q,4+q’X = $ (V,ll, + v&J +? = 0 

We find that the first condition of (5) 1s equivalent to the following statement: the deri- 
vative of the left-hand side of the linear integral vanishes identically by virtue of the 

wuaCfom (6). 
The first condition of (5) yields 

v,+ + v,q* = 2P~*~~~~*~ + 2P~~~~~~*~ (7) 

On the other hand, differentfating the left-hand side of the linear integral and using (6) 
and (7), we obtain 

= $ (V,?I, + V&) Q’$” = A*O,PP’” 

(‘$ = PQpxhi” + P,Ah2) 

Thus the first condition of (5) is equivalent to the following statement: the derivative 
of the left-hand side of the linear integral is, by virtue of (6), a linear combination of 
the equations of constraint. 

Example. Let us consider the motion of Chaplygin sleigh on a horizontal plane 
[6] in the case when the direction of the rnnner is perpendicular to the segment connect- 
ing the center of gravity with the cutting point, and M = 1. The expression for the kine- 
tic energy and the equation of nonholonomic constraint have the form 
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2T=(Fi eos~~‘)a+(~*-~sin(P’p’)a+kC8ip*B, Tj’=tgf+)E 

For the vectors aV and 0” we have 

%(l, 0, Oh d(ka -+ la, 1 cos cp, 1 sin (p) 

%(O, 1, tg V)l oqz / co9 cp, 1, tg cp) 

%(O? --tg 9, i), m4 --ts cp, 1) 

The equations of motion of the nonholonomic system are as follows: 

‘p v a. = 0 <” = - tg CpE’ qj- 

It can easily be checked that g* I cos 4, = C is the first linear integral of the nonholo- 

nomic system. The latter integral does not satisfy the second condition of (4). Setting 
pl = rp, q% 6 and qs = 71 we obtain El = 0, E2 = 1 f cos cp and & = 0 , hence 

gx’x$x = - sin cp / cosZ rp # 0 

The vector E, can be represented by a linear combination of the vectors ox” as follows: 

The linear integral in question has a unique generating vector which lies in the admis- 

sible space and is 1 
rl,=-~kzoxi-k 2+ ( -$) cosw,~ 

Substituting oxland 0~2, we obtain th = 0, rb = ~0s cp and Q = sin 4p. 

The relation GOS & + sin ‘pq’ = c represents another form of the same linear integral, 
We shall show that the first condition of (5) obtained in the present paper holds for this 
integral, but not the first condition of (4) in [5], In fact, using the constraint-free system 
in inertial motion 

cp” = 0, f” = - 0 sin qq 2, q” = fi cos iprp‘ * (8) 

and differentiating the left-hand side of the linear integral we have, by virtue of (8). 

6 / dt(i’ cos cp + q: sin (p) = E” cos q _t 9’ sin ‘p - E’ qp’ sin cp ,+. 

n’cp’ co.5 ‘F = qj’ co6 rp (n’ - E’ tg rp) 

The linear integrals of the nonholonomic system which satisfy conditions (4) are also 
linear integrals of the constraint-free system. The first of conditions (4) does not hold 

for those linear integrals of the nonholonomic system which are not simultaneo~ly linear 
integrals of the constraint-free system, while the first of conditions (5) is satisfied for the 

generating vector Ilx = I%(J.&~ in the admissible space. 
Conditions analogous to (5) can be obtained for any first integrals of the type shown 

in Sects. 2 and 3 of Cl]. 
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Multifrequency oscillations in systems with a large number of degrees of freedom 
were considered in [ 1, 21. In the present paper we study multifrequency oscilla- 
tions of systems of a more specific form ; we reduce the problem to the study of 

canonical systems of differential equations describing the resonance phenomena. 

1, We consider a conservative system with n degrees of freedom, which has a stable 
position of eq~libri~ ; in a neighborho~ of this position the system performs relatively 
small oscillations. The system is acted on by N perturbations, which neither change the 
position of equilibrium nor lead out the motion of the system beyond the neighborhood 

of this position. We shall regard these perturbations as generalized coordinates (with in- 
dex larger than n), which are specified functions of time. These coordinates enter for- 

mally into the expressions for the kinetic and potential energies (i.e. we assume that 
the conditional system with n + N coordinates is a conservative system). We assume 
also that owing to a specified internal symmetry in the system. the expressions for the 

kinetic and potential energies are symmetric with respect to all of the n -f N general- 

ized coordinates. Then 

We assume that the symmetry of the coefficients in the expressions for II , shown in the 
parentheses, holds also for the coefficients in the expression for T, i. e. 

aik=” ., 
kz %c 

(js) = &g’ 21= . . . ) . . . O.2) 

This assumption, without restricting the generality of results, leads to more simple and 

symmetric relationships. 
We obtain the differential equations of motion from the equations (1.1) upon using 

the relations (1.2) and the fact that the qi are known functions of time for i = n f 1, 

.- .,n-f-N.. 

Let us assume that all perturbations are harmonic with frequencies p# = 1, 2, . . ,N). 


